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Single-cell technologies have enhanced comprehensive knowledge regarding the human brain by facilitating an extensive
transcriptomic census across diverse brain regions. Nevertheless, understanding the cellular and temporal specificity of neurological
disorders remains ambiguous due to developmental variations. To address this gap, we illustrated the dynamics of disorder risk
gene expression under development by integrating multiple single-cell RNA sequencing datasets. We constructed a comprehensive
single-cell atlas of the developing human brain, encompassing 393,060 single cells across diverse developmental stages. Temporal
analysis revealed the distinct expression patterns of disorder risk genes, including those associated with autism, highlighting their
temporal regulation in different neuronal and glial lineages. We identified distinct neuronal lineages that diverged across
developmental stages, each exhibiting temporal-specific expression patterns of disorder-related genes. Lineages of nonneuronal
cells determined by molecular profiles also showed temporal-specific expression, indicating a link between cellular maturation and
the risk of disorder. Furthermore, we explored the regulatory mechanisms involved in early brain development, revealing enriched
patterns of fetal cell types associated with neuronal disorders indicative of the prenatal stage’s influence on disease determination.
Our findings facilitate unbiased comparisons of cell type‒disorder associations and provide insight into dynamic alterations in risk
genes during development, paving the way for a deeper understanding of neurological disorders.
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INTRODUCTION
The human nervous system undergoes a gradual and complex
developmental process that spans several decades, beginning
with embryogenesis and continuing through infancy, childhood,
adolescence, and young adulthood. This prolonged developmen-
tal period involves the formation of a myriad of functionally
distinct cell types, circuits, and regions. Recent advances in single-
cell technology have surpassed conventional regional analyses to
include comprehensive surveys of the entire human brain. Large-
scale studies such as the Brain Initiative Cell Census Network have
substantially aided in constructing detailed brain maps using
single-nucleus RNA-sequencing analysis1–4. Despite these efforts,
the extant literature has several limitations, including the lack of
donor-specific diversity in terms of brain development and the
absence of temporal dimensions in existing brain atlas studies.
These gaps underscore the necessity for enhanced, comprehen-
sive approaches to delineate the intricate developmental pro-
cesses in the human brain.

The examination of cell types can elucidate the relevant
pathology of neurological disorders, which is highly clinically
important. Because risk genes or genetic variants associated with
neurological disorders are heterogeneous, understanding the cell
types associated with converging their risk would increase our
understanding of the complex etiology and pathophysiological
mechanisms underlying the disorder. De novo variants in autism
disrupt neuronal genes that are overexpressed in the prefrontal
cortex during the mid-fetal period5, indicating that risk perturba-
tion at the molecular level precedes its clinical onset6. Further-
more, single-cell transcriptomics has the potential to suggest a
novel molecular subtype that is not apparent through traditionally
observed symptoms. A large-scale single-cell study of Alzheimer’s
disease postmortem brains was able to identify a novel excitatory
neuron cell type enriched in the cohesin complex and DNA
damage response factors and its association with cognitive
impairment in patients7 and its genetic associations with
noncoding mutations8. This single-cell transcriptome approach
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elucidates the fundamental characteristics of these disorders and
facilitates the development of more effective and personalized
treatments. These findings underscore the imperative for com-
prehensive single-cell transcriptome studies to dissect the roles of
neurological genes across diverse cell types, further enhancing our
understanding of brain disorders. However, existing public
datasets often include a limited number of samples and donors,
underscoring the necessity of creating an extensive resource to
better understand and address neurological disorders
comprehensively.
This study aimed to present the brain transcriptome at the

single-cell level (BTS), a single-cell atlas for developing human
brains, and evaluate the cellular and temporal specificities of
neurological disorder genes. Data from eight previously published
single-cell transcriptomics studies were integrated to create a
dataset comprising 114 human postmortem brain samples from
80 donors, spanning from the early fetal stages (7 gestational
weeks) to late adulthood (90 years old). Our atlas offers a
comprehensive resource for elucidating the developmental
trajectory of the human brain and identifying various cell types
that represent distinct temporal windows of development.
Furthermore, leveraging this dataset, we conducted an in-depth
exploration of cell type-specific genes implicated in neurological
disorders and delineated the molecular mechanisms underlying
neurodevelopmental disorders and age-related neurological con-
ditions. This study advances human brain research and provides
valuable insights into normal and pathological neurological
processes throughout the human lifespan.

MATERIALS AND METHODS
Collection of single-cell transcriptome datasets
Single-cell and single-nucleus RNA-sequencing datasets were obtained in
raw count matrices from publicly available sources. We collated 8 datasets
to ensure a complete representation of brain development, spanning both
the prenatal and postnatal stages. Neurotypical samples were selected
from each dataset to reflect normal brain development. Our datasets
included 114 samples from 80 donors obtained from the Allen Brain Map
Cell Types Database, the European Genome-phenome Archive (EGA), the
Gene Expression Omnibus (GEO), and the Human Cell Atlas Data Portal
(Supplementary Table 1a). Count matrices were collated from Allen Brian
Human_M1 10X data (https://portal.brain-map.org/atlases-and-data/
rnaseq/human-m1-10x, n= 2), Braun et al.9 (EGAD00001006049, n= 19),
Cameron et al.10 (EGAS00001006537, frontal cortex, and ganglionic
eminence region, n= 3), Hardwick et al.11 (GSE178175, n= 2), Herring
et al.12 (GSE168408, n= 24), Morabito et al.13 (GSE174367, n= 7), Nagy
et al.14 (GSE144136, n= 17), and Zhu et al.15 (GSE202210, n= 6). For the
Herring et al. dataset, cells annotated as poor-quality clusters in the
original publication were excluded. In the Morabito et al. dataset, cells
lacking sample information were excluded. For the Braun et al. dataset, sex
information was inferred based on XIST expression. Metadata for each
sample was collected and harmonized in the format of the Human Cell
Atlas, including the source dataset, donor ID, sample ID, sequencing
platform, library batch, sex, age, stage, race, hemisphere, brain region,
postmortem interval (PMI), and diagnosis (Supplementary Table 1b). Age
information was formatted in days, with the fetus’s age described in terms
of gestational age, assuming a 40-week pregnancy from the last menstrual
period. For datasets recording fetal age in postconceptual age (assuming a
38-week pregnancy), 14 days were added to convert to gestational age.
The samples were categorized into 11 developmental stages based on the
definitions by Kang et al.16.

Quality control and integration
The raw count matrices from distinct datasets were concatenated into a
single dataset. Gene names were standardized using a gene symbol
dictionary derived from NCBI and HGNC, excluding genes without valid
annotations. Cells with small numbers of genes (<50 genes) and large
proportions of mitochondrial genes (>30% of the total gene count) were
filtered out. Doublet detection was performed using Scrublet17 (v0.2.1),
and putative doublets were removed. To ensure sample balance across
datasets, 50 samples from the Braun et al. dataset were randomly selected

for analysis. Normalization and log transformation were conducted using
Scanpy18 (v1.8.2). Highly variable genes were selected within each sample
and merged to prevent batch-specific biases. This process involved
calculating highly variable genes within each sample, sorting them by the
number of samples in which they were identified, and selecting the top
5000 genes found in most samples. Datasets were merged across different
samples using scvi-tools19 (v1.0.3), and the batch effect was adjusted by
setting the batch key as the sample ID and additional categorical covariate
keys, including the source dataset, assay information (single-cell or single-
nuclei), and library kit (10 × 3’ v2 or 10 × 3’ v3). The latent representation
for each cell was used to compute the nearest neighbor distance matrix
and construct a neighborhood graph. The Leiden algorithm was used for
clustering with a resolution of 0.6.

Annotation of clusters
The major cell types were identified based on annotations from original
studies and expression profiles of cell type marker genes defined by the
Allen Brain Institute20: SLC17A7 for excitatory neurons; GAD1 for inhibitory
neurons; FGFR3 for astrocytes; TYROBP for microglia; OPALIN for
oligodendrocytes; PDGFRA for oligodendrocyte progenitor cells (OPCs);
NOSTRIN for endothelial cells; HES1 and SOX2 for radial glia; and NHLH1
and NEUROD6 for neuroblasts. Cell subtypes for neurons were defined by
layer markers for excitatory neurons (LINC00507 for layers 2–3; RORB for
layers 3–5; FEZF2; and THEMIS for layers 4–6) and branch markers for
inhibitory neurons (PVALB and SST for the medial ganglionic eminence
(MGE); LAMP5, VIP and ADARB2 for the caudal ganglionic eminence (CGE)).
Each cluster was further annotated by determining the most cluster-
specific marker, exhibiting the greatest fold change with a false discovery
rate (FDR) < 0.05 compared with all other cells detected in at least 25% of
the cells within the cluster (Supplementary Table 2). The Wilcoxon rank-
sum test was used for differential testing.

Gene set enrichment test for neurological disorders and
glioblastoma
A comprehensive set of risk genes associated with various neurological
disorders and conditions identified in large-scale exome studies or
genome-wide association studies (GWASs) was systematically collated.
The risk genes were subjected to enrichment tests with cluster-specific
DEGs with a threshold of FDR < 0.05 and a log2-fold change >0.2. A one-
sided Fisher’s exact test with multiple comparisons was applied. A detailed
description of the method is included in the Supplementary Methods.

Pseudotime and trajectory analysis
Pseudotime analysis was performed using Palantir21. The subset of each
cell type of interest was reprocessed before analysis. Diffusion maps were
derived from the embeddings. Pseudotime computation and trajectory
construction were conducted. Gene trends were subsequently computed
for each lineage, and gene expression was illustrated across pseudotime
for temporal investigation. A detailed description of the method is
included in the Supplementary Methods.

Analysis of gene expression profiles across
developmental ages
Pseudobulk aggregation of the expression matrix was performed using
decoupler22 (v1.5.0). The expression profiles were summarized across cells
per sample ID and Leiden cluster by calculating the mean log-normalized
count. To ensure data quality, samples harboring a minimum of 10 cells
and 1000 accumulated counts were exclusively considered for pseudobulk
aggregation. Trend lines for samplewise expression were generated by
fitting using the Loess function with a span of 0.4, enabling a smooth
representation of expression trends across developmental ages. Leiden
clusters containing more than 4600 cells were included to capture robust
population dynamics, and cells from the Nagy et al. dataset were excluded
because the exact age of the samples was unknown.

Inference of gene regulatory networks and enriched signaling
pathways
Inference of gene regulatory networks involved aggregating 393,060 cells
into 5000 meta-cells using SEACells (v0.3.3). Transcription factor regulatory
networks were inferred using pySCENIC (v0.12.1), with regulon activities
calculated and visualized as heatmaps for each SEACell. Gene sets for
hormonal regulation, kinase-mediated pathways, and immune signaling
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were analyzed from the Reactome database, computing module scores by
averaging expression levels. A detailed description of the method is
included in the Supplementary Methods.

RESULTS
Generation of a single-cell atlas for developing human brains
We established a single-cell atlas for developing human brains by
compiling single-cell RNA sequencing (scRNA) and single-nucleus
RNA sequencing (snRNA) datasets from eight studies comprising
80 donors and 114 postmortem brain samples (Fig. 1a, b,
Supplementary Fig. 1). This comprehensive single-cell atlas
integrates expert-curated, quality-assured, and preanalyzed data-
sets from publicly available studies on the pre- and postnatal
periods of the human brain. We selected samples that had not
been previously reported for neurological disorders, assuming
neurotypical brains. The samples encompassed a wide range of
developmental stages from 7 gestational weeks to 90 years of age
and diverse brain regions (Fig. 1c, d). As the datasets were
heterogeneous in terms of data quality, gene name representa-
tion, and sample metadata, we rigorously conducted a quality
control process for the datasets and created a consensus notation
for the sample metadata (Supplementary Table 1). To mitigate the
batch effect when combining these datasets, we matched gene
names across the datasets and integrated the raw matrix files of
the single-cell datasets using the scVI tool19 (Supplementary Fig.
2). Overall, the single-cell atlas integrated 393,060 single cells and
41 clusters, which were annotated as 10 major cell types and 22
cell subtypes, based on the Allen Brain Institute classifications20

(Fig. 1e–g).
With respect to excitatory neurons, we identified cell subtypes

based on developmental stages and cortical layers. We character-
ized 11 clusters of cortical layer-specific excitatory neurons
expressing markers for cortical layers 2–3 (LINC00507), layers
3–5 (RORB), and layers 4–6 (FEZF2 and THEMIS). Consequently,
there were two clusters (C1 and C15) for layers 2–3, three clusters
(C5, C10, and C22) for layers 3–5, and six clusters (C14, C16, C17,
C25, C34, and C36) for layers 4–6. Additionally, we identified two
clusters that were predominantly present in the fetal second
trimester (C12 and C29). C12 displayed a dynamic composition
spanning from 14 postconception weeks to 35 months after birth,
which could offer insights into the fetal-to-neonatal transition of
excitatory neurons. Inhibitory neurons were classified into cell
subtypes based on marker expression of the caudal ganglionic
eminence (CGE) branch (ADARB2, LAMP5, and VIP) and medial
ganglionic eminence (MGE) branch (LHX6, PVALB, and SST). We
characterized seven clusters of branch-specific inhibitory neurons.
In the CGE branch, two clusters (C21 and C28) expressed LAMP5,
one cluster (C7) expressed VIP, and one cluster (C19) expressed
ADARB2. In the MGE branch, two clusters (C8 and C31) expressed
PVALB, and one cluster (C6) expressed SST. Furthermore, we
identified two clusters enriched in fetal inhibitory neurons (C20
and C23) that were prevalent in the second trimester. These
clusters presented distinct expression patterns of branch markers.
C20 was distinguished by the expression of LHX6, whereas C23
exhibited the expression of ADARB2, indicating their unique
developmental origins.
Our single-cell atlas delineates clusters specific to various

developmental stages. Clusters of radial glia (C4, C18, and C37)
and neuroblasts (C3, C11, C24, C26, and C33) were predominantly
present during the fetal first and second trimesters. Microglia and
oligodendrocytes were subdivided into two clusters, each of
which was based on developmental stage. We found that one
microglial cluster was prevalent in the adult stage (C13), and the
other was predominant in the fetal first trimester (C39). For
oligodendrocytes, one cluster prevailed in the adult stage (C0),
whereas the other predominated in the neonatal stage (C38).
Astrocytes and OPCs were subdivided into two clusters. One

cluster (C2 for astrocytes and C9 for OPCs) exhibited a mix of
developmental stages, whereas the other cluster (C27 for
astrocytes and C32 for OPCs) predominantly represented adult-
stage cells.
We further validated our cluster annotation by evaluating the

enrichment of cluster-specific differentially expressed genes
(DEGs) with cell type-specific DEGs identified in the latest single-
cell study of the developing human brain23 (Fig. 1h, Supplemen-
tary Table 2). We observed significant overlaps between fetal
excitatory neurons (C12, C29) and previously identified early fetal
excitatory neurons (EN-fetal-early) (C12, odds ratio [OR]= 7.81,
adjusted p value= 9.98 × 10−21; C29, OR= 6.35, adjusted p
value= 3.08 × 10−20), as well as late fetal excitatory neurons (EN-
fetal-late) (C12, OR= 8.15, adjusted p value= 1.51 × 10−29; C29,
OR= 7.55, adjusted p value= 9.57 × 10−36). We found a significant
overlap between fetal inhibitory neurons (C20, C23) and
previously identified fetal inhibitory neurons (IN-fetal) (C20,
OR= 8.38, adjusted p value= 1.25 × 10−9; C23, OR= 6.70,
adjusted p value= 8.52 × 10−6). Radial glia, neuroblasts, and
nonneuronal cell types also exhibited significant enrichment with
cell type-specific DEGs, further confirming our classification
results. Regarding C38, which predominantly consists of oligoden-
drocytes present during the neonatal stage, significant overlap
was observed with both oligodendrocytes (OR= 6.25, adjusted p
value= 1.25 × 10−2) and OPCs (OR= 28.8, adjusted p
value= 3.15 × 10−33), suggesting an ongoing differentiation
process toward mature oligodendrocytes within this cluster.
Overall, these results validate the annotation and underscore the
robustness and fidelity of our atlas in capturing the dynamic
landscape of human brain development.

Cellular landscape of neurodevelopmental disorder genes in
early neuronal lineages
Over the past decade, large-scale genomic studies have identified
risk genes associated with neurological disorders and implicated
substantial locus heterogeneity in the underlying etiology. Unravel-
ing the intricate temporal patterns of risk genes is crucial for
deciphering the underlying pathological mechanisms and identify-
ing the most relevant cell types and developmental stages
implicated in disease pathogenesis. To investigate the cellular and
temporal specificity, we compared the risk genes associated with
these disorders with genes enriched in specific cell subtypes (Fig. 2a,
Supplementary Table 3a). We prioritized 14 sets of genes previously
reported to be associated with neurological disorders in large-scale
genomic studies and examined their expression profiles in our
single-cell atlas. Consequently, distinct patterns of gene enrichment
were detected in a cell type-specific manner. Risk genes for
neurodevelopmental disorders, including autism, developmental
delay, and epilepsy, are predominantly expressed in neuronal cell
types. The autism and developmental delay risk genes were
considerably enriched in both excitatory and inhibitory neuronal
cell types, which is consistent with previous findings24–26 (Supple-
mentary Table 3b). Genes associated with epilepsy were specifically
enriched in excitatory neurons located in cortical layers 4–6 (C36)
and SST-expressing inhibitory neurons (C6).
We further investigated the cellular lineages underlying the

neuronal clusters and the lineage-specific patterns of neurodeve-
lopmental disorder risk genes. The pseudotime trajectory built on
cellular identity reflected the clustering patterns of cells differ-
entiating from radial glia to neuroblasts, eventually committing to
mature neurons under the age of 20 years (Supplementary Fig. 3).
Three distinct lineages diverged from radial glia and differentiated
into excitatory and inhibitory neurons (Fig. 2b), each enriched for
specific risk genes (Fig. 2c) and encompassing cells across various
developmental stages (Fig. 2d). These lineages were characterized
as those destined for excitatory neurons (lineage 1), MGE-derived
inhibitory neurons (lineage 2), and CGE-derived inhibitory neurons
(lineage 3) (Fig. 2e).
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Lineage 1 represents a differentiation trajectory from radial glia
to excitatory neurons, marked by the transient expression of
NEUROD6 as neuroblasts transition into excitatory neurons.
Among the autism risk genes, those involved in transcriptional
regulation, such as RNASE1 and TCF7L2, are predominantly
expressed in the early stages of this lineage. Most autism- and
developmental delay-related genes peaked during the initial
phase of the lineage. In contrast, RAB14 and MYCN, other risk
genes for developmental delay, exhibited peaks in later stages,
which coincided with neuroblast differentiation into excitatory
neurons during the fetal second trimester. FOXP2, a risk gene for
both autism and developmental delay, was highly expressed at
the end of the lineage, particularly in the postnatal stage. The Wnt
signaling pathway (GO:0016055) mediated by TCF7L2 was
significantly enriched in this lineage (FDR= 4.79 × 10−2) (Fig. 2f,
Supplementary Table 4a), suggesting its involvement in the
pathophysiology of autism and developmental delay. Lineage 1 is
also characterized by enrichment in the cell cycle and translation
processes, implying increased cellular activity and proliferation,
which are essential for neurogenesis and neuronal differentiation.
Although the enrichment of genes related to the mitotic cell cycle
(GO:0000278) was recurrent in other lineages, the low number of
overlapping genes confirmed that the lineage-specific character-
istics were distinct from those of other lineages (Fig. 2g).
To further elucidate the distinctions among the pseudotime

stages within this differentiation lineage, we compared cells at
earlier, middle, and later pseudotime points along with their
enriched biological pathways (Fig. 2h, Supplementary Table 4d–f).
Cells transitioning from early to middle pseudotime stages were
enriched predominantly in pathways related to cellular infrastruc-
ture, such as chromosome organization (early, FDR= 1.74 × 10−5;
middle, FDR= 2.26 × 10−8) and microtubule-based processes (early,
FDR= 7.17 × 10−3; middle, FDR= 3.61 × 10−2). Genes involved in
these pathways, including centromere proteins (CENPK and CENPV),
high mobility group boxes (HMGB1 and HMGB3), and tubulin alpha
(TUBA1A and TUBA1C), were more highly expressed in early- and
middle-stage cells than in later-stage cells. Nonetheless, cells in the
middle pseudotime stage were also specifically enriched in the
regulation of the Wnt signaling pathway (FDR= 4.15 × 10−2), which
was mediated by the upregulation of genes such as FZD7, GID8,
IGFBP2, TMEM9, and WNT5A. Cells in the later pseudotime stage
exhibited specific enrichment in synaptic pathways, characterized by
the upregulation of several neuronal markers, including CUX2,
glutamate metabotropic receptor genes (GRM1, GRM2, and GRM3),
and several autism risk genes, including PTEN, SCN2A, and SHANK2.
These results indicate that essential biological processes are
dynamically regulated throughout neurodevelopment, highlighting
the temporal specificity of differentiation.
Lineages 2 and 3 represented the differentiation trajectory from

radial glia to inhibitory neurons, diverging into MGE-derived (C20)
and CGE-derived (C23) neurons (Supplementary Fig. 3). This
divergence is distinguished by the increased expression of the
MGE-branch markers SST, LHX6, and PVALB in lineage 2 and the
increased expression of the CGE-branch markers ADARB2, VIP, and
LAMP5 in lineage 3. In lineage 2, regarding autism risk genes
involved in neuronal communication, AP2S1 exhibited initial
expression, whereas SLC6A1 was highly expressed in a later
lineage. Risk genes for developmental delay, including CTCF,
SATB1, ARID2, SMAD4, H3-3A, SOX2, and PPP2CA, were coherently
expressed during the transition phase from neuroblasts to fetal
inhibitory neurons around the fetal second trimester, suggesting a
heightened risk of disorder at this stage of neural development. In
lineage 3, risk genes associated with developmental delay,
including PHIP, RORA, ATP1A2, FGFR2, ETF1, SON, U2AF2, SMC3,
and HNRNPU, coherently peaked during the initial phase of the
lineage. PAX5, which represents an autism risk gene involved in
gene expression regulation, peaked during the middle phase of
this lineage within neuroblast cells of the fetal first trimester.

Moreover, other risk genes for developmental delay, such as BRD3,
KBTBD7, and GATA3, also peaked during this stage, whereas SOX2
displayed high expression in a later lineage. Like lineage 1,
lineages 2 and 3 presented significant enrichment in pathways
associated with chromosomal organization and mitotic cell cycle
processes (Supplementary Table 4b, c). Nonetheless, few genes
overlapped between the common pathways, implying that
lineage-specific genes distinctly constituted the core pathways
involved in early neuronal development. These results suggest
that the distinct association of risk genes with the neuronal
lineage aligns with functional variations across neuronal
maturation.

Exploring neurological disorder-related gene expression in
glial cell types
Glial cells play pivotal roles in maintaining nervous system home-
ostasis, providing support and protection to neurons, and participat-
ing in signal transmission. Dysfunction of glial cell types has been
reported in several neurodegenerative disorders, such as Alzheimer’s
disease and Parkinson’s disease. Nonetheless, the detailed trajec-
tories of glial cell differentiation and their implications in
neurological disorders remain unknown. As described previously,
we mapped the risk genes for neurological disorders in a
developmental trajectory of glial cell types (Fig. 2a). Astrocytes (C2,
C27) exhibited significant enrichment of risk genes for develop-
mental delay (C2, OR= 2.22, adjusted p value= 1.69 × 10−4) and
autism (C27, OR= 1.96, adjusted p value= 3.67 × 10−3). The risk
genes for Alzheimer’s disease were predominantly expressed in
microglia (C13, OR= 3.83, adjusted p value= 3.96 × 10−3), empha-
sizing their potential role in the pathology or progression of
Alzheimer’s disease. The risk genes for Parkinson’s disease were
specifically enriched in fetal oligodendrocytes (C38) (OR= 3.22,
adjusted p value= 2.53 × 10−4) and OPCs (C9, OR= 2.86, adjusted p
value= 5.65 × 10−6; C32, OR= 1.89, adjusted p value= 2.92 × 10−3).
To further investigate the expression dynamics of these risk

genes, we identified individual cellular trajectories for each cell
type and their expression profiles. We found that oligodendrocyte
progenitors diverged from radial glia and were distinct from
neurons (Supplementary Fig. 4). Focusing on the dynamics of the
oligodendrocyte lineage, we examined the differentiation of these
cells starting from OPCs. Oligodendrocytes appeared to have a
single trajectory from OPCs (C9 and C32), differentiating into fetal
oligodendrocytes (C38) and mature oligodendrocytes (C0)
(Fig. 3a). This trajectory was characterized by mixed develop-
mental stages across the lineage pseudotime, suggesting the
presence of both progenitor and mature cells throughout the
postnatal period (Fig. 3b, c, Supplementary Fig. 5a–d). Risk genes
specifically expressed in the oligodendrocyte lineage exhibited
distinct peak expression patterns (Fig. 3d). In the earlier lineage,
risk genes associated with abnormal brain morphology (AGMO)
and anxiety disorders (KAT2B) were highly expressed. Earlier genes
were involved in neuronal projections and intracellular cytoske-
letal activity (Fig. 3e, Supplementary Table 4g). This included a
microtubule-based process (GO:000701, FDR= 1.96 × 10−2)
mediated by KAT2B, a risk gene for abnormal brain morphology.
SOX10, a risk gene associated with developmental delay, was
expressed at the highest level when OPCs differentiated into
oligodendrocytes. Conversely, PHLDB1 spiked as oligodendrocytes
matured, implying temporal variation in the expression of
developmental delay risk genes during oligodendrocyte develop-
ment. Two Parkinson’s disease risk genes presented distinct
patterns, with PLPP4 expressed in initial OPC cells and DNAH17
expressed in late oligodendrocytes. Other genes expressed in the
latter part of the lineage included anxiety disorder risk genes
(AATK and TBC1D2), abnormal brain morphology genes (TSPAN15,
GLTP, and SLCOB1), and an autism risk gene (ATG13). Cells at a
later stage exhibited enrichment in pathways related to cell
growth and morphogenesis (Fig. 3e, Supplementary Table 4h),
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suggesting a maturation process rather than rapid differentiation
and transition of the cell state.
Astrocytes possess three distinct lineages, regardless of their

developmental stage or cluster (Fig. 3f–j, Supplementary Fig. 5e–i,
Supplementary Table 4i–k). These lineages were further character-
ized by the distinct expression of risk genes and known markers
representing specific astrocyte subtypes27–29. In lineage 1, the
autism risk gene EHMT1 was highly expressed at the earliest point,
followed by the sequential peak of CELF4. The risk genes of
developmental disorders (ELAVL3, GRIA2, and CHD7) presented
high expression at the later stages of the lineage. This lineage was
enriched in neuron projections and synaptic transmission path-
ways. Lineage 1 was enriched exclusively in the intermediate
filament (IF) gene nestin (NES), which was also a marker of neural
stem and progenitor cells. It was also distinctly expressed with
THBS1, which is known to promote synaptogenesis30. Pathways
enriched in this lineage are associated mainly with neuronal

development, suggesting its neurodevelopmental role. In lineage
2, risk genes associated with developmental delay, such as ZBTB20
and HNRNPU, were highly expressed at the initial stage. In
contrast, TAB2 expression peaked during the middle stage,
whereas TRPM3 exhibited strong expression at the latter stage,
suggesting distinct roles for each gene during cell maturation
within the lineage. The autism risk genes involved in transcrip-
tional regulation (DEAF1) and the cytoskeleton (DPYSL2) were
strongly expressed at the end of the lineage. This lineage depicts
the differentiation of fibrous astrocytes and is characterized by
distinct expression of the fibrous astrocyte marker genes TNC and
CD44, which are known to be involved in cell‒cell interactions and
cell adhesion31,32. The cilium organization pathway (GO:0044782,
FDR= 7.68 × 10−2) was also enriched in this lineage, where the
cilium serves as a microtubule-based signaling device for various
physiological functions of astrocytes. In lineage 3, PIK3CA, a risk
gene for both autism and developmental delay, peaked in the
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middle part of the lineage. This was followed by the sequential
expression of METAP1, a risk gene for autism and schizophrenia,
along with AP3B2, a risk gene for developmental delay. The
expression levels of other genes associated with developmental

delay (FOXG2, NLGN2, and MSI1) peaked later in the lineage.
Lineage 3 contains cells undergoing protoplasmic astrocyte
differentiation. This lineage is characterized by constant expres-
sion of the glutamate transporter genes SLC1A2 and SLC1A3,
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which are marker genes of protoplasmic astrocytes28,33. These
results suggest an association of risk genes with cellular
maturation lineages in nonneuronal cells, indicating the temporal
specificity of disorder risk.

Multifaceted regulatory mechanisms governing early brain
development
To deepen our understanding of the complex orchestration of
brain development, we investigated the regulatory landscape of
transcription factors, immune signaling, hormonal regulation, and
kinase-mediated pathways. First, we predicted a cluster-specific
gene regulatory network linking transcription factors to their
putative target genes by integrating motif enrichment and gene
coexpression analyses (Supplementary Table 5a). In total, 633
transcription factors were predicted to be activated in at least one
cell type (Fig. 4a). Based on the predicted regulon activity of the
transcription factors, the clusters were categorized into six
different groups. From this, we identified canonical transcription
factors for neurodevelopment, such as NFIA (astrocytes)34,35 and
TCF12 (oligodendrocytes)36, confirming the validity of our
findings.
Based on these results, we further elucidated the transcription

factors implicated in neurological disorders. Fetal radial glia and
neuroblast cells were enriched for HMGB3 and YBX1 (Group 2).
These genes are involved in glioblastoma tumorigenesis and
tumor growth37,38. We found that HMGB3 and YBX1 were
predicted to target 11 risk genes for glioblastoma, including
RPL5 and IDH1, as shared target genes (Fig. 4b). Fetal neurons
appeared to have different transcription factors for later
differentiation from radial glia and neuroblasts. Fetal neurons
were regulated by MEF2C, PBX1, BACH2, POU2F1, NFIX, and RFX7
(Group 3). NFIX, known for its involvement in the differentiation of
radial glia into the neuronal IPC39, and RFX7, known for its role in
neural tube information40, exhibited distinct activities within this
group. NFIX has been predicted to target 28 autism risk genes,
including DIP2C and CSNK1E. MEF2C, which further displays
potent activity in adult neurons, is a transcription factor that
regulates multiple genes associated with autism41. We identified
47 autism-risk genes that were predicted to be targeted by MEF2C
(Fig. 4c). The expression level of MEF2C increased in neurons
across developmental stages, particularly in the fetal third
trimester (Fig. 4d). This pattern was consistent with those of
other autism risk genes, such as GRIN2B (correlation coefficient
(r)= 0.65, p < 2.2e-16), SCN2A (r= 0.64, p < 2.2e-16), and CAC-
NA1D (r= 0.51, p < 2.2e-16), suggesting a coordinated increase
during the fetal third trimester (Fig. 4e, f). These results suggest
that the activation of MEF2C plays a leading role in controlling the
expression of autism-risk genes.
We further compared the signature genes of hormonal

regulation and kinase-mediated and immune signaling pathways
across cell types to elucidate their contributions to neurodevelop-
ment (Fig. 4g, Supplementary Fig. 6, Supplementary Table 5b).
Pathways associated with the sex hormone estrogen were more
enriched in fetal neurons than in adult neurons, implying
differential responsiveness to hormonal cues during neural
maturation. Conversely, kinase activity, especially within the RAS

pathways, was predominantly enriched in adult neurons com-
pared with fetal neurons, suggesting its roles in neuronal survival
and regeneration rather than in neurodevelopment.
Compared with other cell types, immune signaling pathways

were highly enriched in fetal and adult microglia (Supplementary
Table 5c), indicating their pivotal role in immune activities within
the brain. In addition to microglia, radial glia, and neuroblasts
were enriched in immune pathways, particularly interleukin (IL)
signaling pathways (Fig. 4h). Previous studies have reported
putative roles for IL-6 and IL-17A in the development of an autism-
like behavioral phenotype in mouse models of maternal immune
activation (MIA)42,43. Autism-like behavior in the MIA mouse model
is mediated by IL-17 receptor expression in the brains of
offspring44. While some of the IL-17 receptor genes (IL17RA,
IL17RB, IL17RC, and IL17RE) were not distinctly expressed in the
human fetal brain (Supplementary Fig. 7), IL17RD was elevated in
fetal radial glia and neuroblasts (Fig. 4i), indicating its role in the
prenatal risk of MIA. We further examined the onset of IL17RD
expression and found sex-dependent differences (Fig. 4j, Supple-
mentary Figs. 8, 9). In males, IL17RD expression in radial glia and
neuroblasts began on approximately gestational Day 60, peaked
between Days 112 and 154, and then decreased postnatally. In
females, IL17RD expression began later, rising rapidly between
gestational Days 84 and 105, peaking at approximately Day 115.5,
and then decreasing after birth. As MIA offspring are known to
exhibit male-biased behavioral abnormalities45, these findings
may indicate that the differential regulation of IL17RD expression
between males and females may contribute to the varying
susceptibility to MIA.

Identification of the cellular characteristics underlying
glioblastoma
Glioblastoma is a lethal primary brain tumor characterized by
intratumoral heterogeneity. A single-cell atlas may help in
understanding the cellular heterogeneity underlying the clinical
and molecular complexity of this disorder. We first examined
whether the glioblastoma driver genes46 overlapped with cell
type-specific genes. None of the cell types showed significant
enrichment. These findings suggest that genomic associations
might not fully characterize the molecular underpinnings of
glioblastoma.
Thus, we examined the cellular specificity of the signature gene

sets previously defined to represent diverse cellular states in
glioblastoma47 (Fig. 5, Supplementary Table 3c). Overall, the
signature gene sets were aligned with the corresponding original
cell types. In astrocyte-like glioblastoma, AQP4, a gene that
regulates astrocytic process motility, and GFAP, the gene
responsible for the cytoskeletal structure of astrocytes, mediated
the enrichment of astrocyte clusters (C2, C27)48,49. For OPC-like
glioblastoma, PLP1, PLLP, and BCAS1, which are known to be
related to the ability of oligodendrocytes to form and maintain
myelin in the central nervous system, mediated the enrichment of
OPC lineages (C9, C32, and C38)50,51.
There was some overlap in the enrichment of the astrocyte

cluster (C2) and OPC-like glioblastoma, as well as the OPC lineage
clusters (C9, C32, C38) and astrocyte-like glioblastoma,

Fig. 4 Regulatory landscape and pathway enrichment in early brain development. a Heatmap illustrating the regulon activities of
transcription factors across clusters. Transcription factor-target networks depicting the regulation of glioblastoma risk genes by HMGB3 and
YBX1 (b) and the regulation of autism risk genes by MEF2C (c). Prediction confidence was normalized from 0 to 1. The top 25 high-confidence
targets for MEF2C are shown. d Expression of MEF2C over gestational days. The samplewise mean of log-normalized MEF2C expression was
computed using a pseudobulk method. Clusters with at least 4,600 cells (C0–C22) were used. e Correlations between the samplewise means of
log-normalized MEF2C expression and the expression of GRIN2B, SCN2A, and CACNA1D. f Expression of GRIN2B, SCN2A, and CACNA1D across
developmental ages. g Violin plot displaying the pathway module scores as the average expression levels of pathway genes adjusted for
control features. h Violin plot of pathway module scores across major cell types. i UMAP visualization of z score-normalized IL17RD expression.
j Expression of IL17RD over gestational days, stratified by sex.
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demonstrating the shared nature among glial cell types52. Genes
including BCAN, TTYH1, RAB31, GPM6B, PMP2, and PTPRZ1 were
expressed in both lineages, contributing to this shared enrichment
pattern. However, the degrees of enrichment were generally
greater in astrocyte-like glioblastomas for astrocyte clusters and in
OPC-like glioblastomas for OPC lineage clusters. For example, the
astrocyte cluster (C2) was more enriched in astrocyte-like
glioblastoma (OR= 23.40, adjusted p value= 2.0 × 10−17) than in
OPC-like glioblastoma (OR= 5.63, adjusted p value: 2.0 × 10−4).
Similarly, the OPC lineage cluster (C38) was more strongly
enriched in OPC-like glioblastoma (OR= 54.46, adjusted p
value= 5.1 × 10−32) than in astrocyte-like glioblastoma (OR= 7.84,
adjusted p value= 8.1 × 10−3).
Neural progenitor cell (NPC)-like glioblastoma subprograms

were significantly enriched in fetal neurons and fetal cell types.
NPC-like subprogram 1 was enriched for OPCs and oligodendro-
cytes. Among the signature genes, BCAN, DLL3, OLIG1, LRRN1,
TCF12, and TNR were expressed specifically in these cell types. In
contrast, NPC-like subprogram 2 demonstrated significant overlap
for layer 4–6 excitatory neurons (C17) and layer-unspecific
excitatory neurons (C35). TCF4 was included among the signature
genes of NPC-like subprogram 2, emphasizing its regulatory
function in tumor progression.
Mesenchymal-like glioblastoma exhibited different enrichment

patterns between hypoxia-independent and hypoxia-dependent
subgroups. While both were enriched in vascular cells (C30), the
hypoxia-independent subgroup was enriched in astrocytes (C2,
C27), and the hypoxia-dependent subgroup was enriched in radial
glial subtypes expressing HES1 (C4, C18), implying a possible
resemblance of each astrocyte and radial glial subtype to
mesenchymal-like glioblastoma. These results highlight the
importance of investigating cell type-specific perspectives and
studying brain cell types across primary developmental stages to
gain better clinical insights into disease initiation and potential
treatment options.

DISCUSSION
In this study, we constructed a comprehensive single-cell atlas of
the developing human brain to investigate the cellular and
temporal specificity of genes implicated in neurological disorders.
Atlas-level integration enables detailed functional and molecular
profiling of various cell types across multiple human samples. By
analyzing 393,060 single brain cells, our research revealed the
complex cellular compositions and dynamic changes during early
brain development.
Neurological disorders are characterized by high levels of

genetic heterogeneity, and multiple genes may be associated with
a single disorder53,54. Despite the enormous success of large-scale
genomic studies, such as GWASs, these associations require
appropriate interpretation in a biological and genomic context.
Consequently, deciphering the functional convergence of risk

genes is essential for comprehending disease pathophysiology
and identifying potential therapeutic targets55. Our single-cell
atlas can be useful for thorough analyses of risk genes associated
with neurological disorders that may occur during brain develop-
ment. We detected distinct expression patterns of autism risk
genes, including FOXP2, highlighting the temporal regulation of
excitatory and inhibitory neuronal lineages. The PD risk genes
PLPP4 and DNAH17 were shown to be expressed at distinct time
points during oligodendrocyte differentiation, implying that
temporal specificity also appears in glial cells. Moreover, the atlas
enabled the exploration of novel disease mechanisms. For
example, MEF2C, a transcription factor activated during the
transition from prenatal to postnatal neurons, aligns expression
patterns with autism risk genes. In addition, the distinct sex
difference in the onset of IL17RD expression may indicate that it is
a putative target contributing to varying susceptibility to MIA.
Furthermore, certain cellular states in glioblastoma closely
resemble fetal-stage cell types despite their origin in adults,
implying the necessity of investigating the characteristics leading
to this similarity.
Extensive research has focused on the cell type-specific nature

of neuronal diseases, with a primary focus on stage-specific
neuronal cells. However, to further enhance clinical investigations
and therapeutics, it is crucial to consider the temporal and cellular
specificity of neuronal disorders, as well as nonneuronal cell types,
which also exhibit temporal specificity across cellular maturation.
Moreover, our study of neuronal disorders revealed the significant
enrichment of fetal cell types. These findings suggest that the
determination of disorders may be strongly influenced during the
prenatal stage. Therefore, we propose that studying temporal
specificity across brain development warrants a more robust
investigation.
Although our single-cell atlas leverages a large number of

postmortem samples to explore the developing human brain, our
study has several limitations. Despite the use of data from various
donors, our atlas may not encompass the full spectrum of individual
variability in developmental trajectories. For example, the neonatal
and early childhood periods are crucial for assessing synaptic pruning
and the maturation of neural circuits; nevertheless, the availability of
human postmortem brain samples from these stages is limited. A
more extensive and diverse collection of samples would enhance our
understanding of the pivotal role of genetic constitution in early brain
development and its impact on gene expression5. Additionally, owing
to the predominant focus on cortical regions in postnatal datasets,
there are limitations in representing diverse brain regions across all
developmental stages. Addressing these gaps will require concerted
efforts to collect and analyze samples from these critical develop-
mental stages and diverse brain regions to enrich our understanding
of brain development and its implications for neurological disorders.
Nevertheless, we anticipate that this atlas would provide a useful
foundation for addressing the complexity of brain development and
neurological disorders.
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Fig. 5 Cell type and temporal specificity in glioblastoma subtypes. Gene set enrichment test with driver genes and transcriptional
signatures of glioblastoma. A one-sided Fisher’s exact test was used to compute statistics with multiple comparisons by Bonferroni correction.
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DATA AVAILABILITY
The processed data and the CellTypist model for label transfer are publicly available
at Zenodo (https://doi.org/10.5281/zenodo.10939707). Plots illustrating the expres-
sion profiles of 3380 neurological disorder risk genes across the atlas are also
provided. Further availability of the data can be requested from the corresponding
author.
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